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Combined Semi-Supervised Learning and Active
Learning (SSL&AL) Framework for the Limited 
Labeled Data

achine learning mod-
els in areas like Medi-
cal Diagnostics, Auto-

nomous Driving, and NLP typically 
rely on large labeled datasets for 
high accuracy. However, gathering 
extensive labeled data is often cost-
ly and time-consuming, especially in 
specialized fields requiring expert 
annotation. This challenge has 
prompted the exploration of meth-
ods like semi-supervised learning 
(SSL) and active learning (AL) to im-
prove model performance with min-
imal labeled data.

SSL shows promise by leveraging 
unlabeled data to boost perfor-
mance where labeled data is scarce 
[1]. AL complements SSL by selective-
ly querying the most informative 
samples for labeling, thus enhanc-
ing learning efficiency [2]. Combining 
SSL and AL into an SSL&AL frame-
work enables high accuracy with 
minimal labeling. This article ex-
plores SSL&AL's design and applica-
bility in fields requiring efficient da- 

ta use, showcasing its ability to 
maintain robust performance with 
reduced labeled data.

Semi-Supervised Learning (SSL)

Semi-supervised learning (SSL) 
uses both labeled and unlabeled 
data to enhance model performance 
without extensive labeling. In medi-
cal imaging, pseudo-labeling is a 
common SSL technique, assigning 
labels to high-confidence unlabeled 
samples, thus reducing manual la-
beling demands [3]. 

In the SSL&AL framework, SSL ap-
plies pseudo-labeling after training 
a CNN on labeled data. As shown in 
Figure 1, data augmentation is used 
with both “weak” and “strong” trans-
formations to increase model robu-
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Figure 1: Illustration of the SSL framework.

(Image source: [4])
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SSL uses unlabelled data to improve  
learning [1].

The SSL&AL framework alter-
nates between SSL and AL phases: 
starting with a CNN model trained 
on labeled data, the SSL phase adds 
high-confidence pseudo-labeled 
samples to the dataset, while the AL 
phase targets low-confidence sam-
ples for annotation via clustering 
and confidence sampling. This cycle 
incrementally improves classifica-
tion accuracy by efficiently utilizing 
both labeled and unlabeled data.

Experiment on the BCCD Dataset

The SSL&AL framework was test-
ed on the BCCD dataset [3], a stand-
ard in blood cell classification, cho-
sen for its diverse cell images that 
support model generalization. Start-
ing with limited labeled data, the 
framework expanded the dataset it-
eratively using SSL and AL, resulting 
in significant improvements in clas-
sification accuracy, even with mini-
mal labeled samples. Each iteration 
refined decision boundaries, en-
hancing the model’s ability to classi-
fy new data and underscoring 
SSL&AL’s efficiency in achieving high 
accuracy with limited labeling.

Discussion and Conclusion

The SSL&AL framework’s success 
on the BCCD dataset underscores its 
potential in medical diagnostics, 
where large labeled datasets are 
costly. Combining SSL and AL, the 
framework efficiently uses unlabe-
led data and selectively annotates 
informative samples, optimizing re-
sources [1, 2]. Its iterative approach 
continuously improves model accu-
racy, making SSL&AL a scalable solu-
tion for complex classification tasks.  

stness. Only high-confidence pseu-
do-labeled samples are added to 
the training set, effectively expand-
ing the labeled dataset and boosting 
classification accuracy.

Active Learning (AL) 

Active learning (AL) enhances la-
beling efficiency by selecting the 
most informative samples for anno-
tation, crucial in scenarios with lim-
ited labeled data [2]. Figure 2 demon-
strates that AL prioritizes 
low-confidence samples, often near 
decision boundaries, to improve 
model accuracy.

In the SSL&AL framework, AL uti-
lizes a cluster-based sampling ap-
proach. Using K-means++ clustering 
(Figure 2), samples are grouped, and 
low-confidence samples within each 
cluster are identified by probability 
scores. By prioritizing these bounda-
ry samples for labeling, the SSAL 
framework minimizes labeling needs 
while optimizing model perfor-
mance.

Semi-Supervised Learning and Ac-
tive Learning (SSL&AL)

SSL and AL are combined in the 
SSL&AL framework to provide an ef-
fective, iterative categorization 
model. While AL chooses the most 
informative samples for labeling, 
maximizing resources, and increas-
ing accuracy with little labeled data, 

Future enhancements to SSL and AL 
could extend SSL&AL’s adaptability 
to diverse and complex medical im-
aging applications.
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Figure 2: Illustration of the AL framework.
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